Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            MacDonald, James H; Clary, Renee M; Archer, Reginald; Broadway, Ruby (Ed.)Participation in authentic scientific research has been shown to greatly benefit undergraduate students, both in terms of perception of science and knowledge of scientific concepts. We define authentic scientific research as projects in which results are unknown prior to performing experiments and are appropriate for presentation in peer-reviewed scientific journals and/or scientific conferences. Kindergarten through grade 12 (K–12) students have less frequent opportunities to participate in authentic research than university students, and the effects of research participation on such students are less well understood. From 2013 to the present, we organized two collaborations with different groups of K–12 students and teachers, each aimed at engaging K–12 students in authentic geoscience research, with a focus on K–12 students from excluded backgrounds who may have had restricted access to resources. First, the Malcolm X Shabazz Aquatic Geochemistry Team was an initiative to involve high school students at Malcolm X Shabazz High School in Newark, New Jersey, USA, in research focused on the activities of microbial communities inhabiting streams and rivers in New Jersey and eastern Pennsylvania. Second, the Integrating Continuous Experiential Activities for Geoscience Education (ICE-AGE) project is a Pathways into the Earth, Ocean, Polar and Atmospheric & Geospace Sciences (GEOPAths) project funded by the National Science Foundation that involves K–12 students in experiential learning through diverse means, including involving middle school students taking part in a summer program pseudonymously referred to as the Liberation Literacy Program (LLP) in geoscience research on a number of topics. Here, we report qualitative observations of the successes and challenges of these programs, as well as lessons learned, which may be useful for other researchers seeking to involve groups of K–12 students in authentic geoscience research education.more » « lessFree, publicly-accessible full text available June 16, 2026
- 
            Svensson, Sarah L (Ed.)Bacterial chromosomal type I toxin-antitoxin systems consist of a small protein, typically under 60 amino acids, and a small RNA (sRNA) that represses toxin translation. These gene pairs have gained attention over the last decade for their contribution to antibiotic persistence and phage tolerance in bacteria. However, biological functions for many remain elusive as gene deletions often fail to produce an observable phenotype. For many pairs, it is still unknown when the toxin and/or antitoxin gene are natively expressed within the bacterium. We examined sequence conservation of three type I toxin-antitoxin systems,tisB/istR-1, shoB/ohsC, and zor/orz, in over 2,000Escherichia colistrains, including pathogenic and commensal isolates. Using our custom database, we found that these gene pairs are widespread acrossE. coliand have expression potential via BLASTn. We identified an alternative, dominant sequence variant of TisB and confirmed that it is toxic upon overproduction. Additionally, analyses revealed a highly conserved sequence in thezorOmRNA untranslated region that is required for full toxicity. We further noted that over 30% ofE. coligenomes contain anorzantitoxin gene only and confirmed its expression in a representative strain: the first confirmed report of a type I antitoxin without its cognate toxin. Our results add to our understanding of these systems, and our methodology is applicable for other type I loci to identify critical regulatory and functional features.IMPORTANCEChromosomal type I toxin-antitoxins are a class of genes that have gained increasing attention over the last decade for their roles in antibiotic persistence which may contribute to therapeutic failures. However, the control of many of these genes and when they function have remained elusive. We demonstrate that a simple genetic conservation-based approach utilizing free, publicly available data yields known and novel insights into the regulation and function of three chromosomal type I toxin-antitoxins inEscherichia coli. This study also provides a framework for how this approach could be applied to other genes of interest.more » « less
- 
            Molecular hydrogen is produced by the fermentation of organic matter and consumed by organisms including hydrogenotrophic methanogens and sulfate reducers in anoxic marine sediment. The thermodynamic feasibility of these metabolisms depends strongly on organic matter reactivity and hydrogen concentrations; low organic matter reactivity and high hydrogen concentrations can inhibit fermentation so when organic matter is poor, fermenters might form syntrophies with methanogens and/or sulfate reducers who alleviate thermodynamic stress by keeping hydrogen concentrations low and tightly controlled. However, it is unclear how these metabolisms effect porewater hydrogen concentrations in natural marine sediments of different organic matter reactivities. MethodsWe measured aqueous concentrations of hydrogen, sulfate, methane, dissolved inorganic carbon, and sulfide with high-depth-resolution and 16S rRNA gene assays in sediment cores with low carbon reactivity in White Oak River (WOR) estuary, North Carolina, and those with high carbon reactivity in Cape Lookout Bight (CLB), North Carolina. We calculated the Gibbs energies of sulfate reduction and hydrogenotrophic methanogenesis. ResultsHydrogen concentrations were significantly higher in the sulfate reduction zone at CLB than WOR (mean: 0.716 vs. 0.437 nM H2) with highly contrasting hydrogen profiles. At WOR, hydrogen was extremely low and invariant (range: 0.41–0.52 nM H2) in the upper 15 cm. Deeper than 15 cm, hydrogen became more variable (range: 0.312–2.56 nM H2) and increased until methane production began at ~30 cm. At CLB, hydrogen was highly variable in the upper 15 cm (range: 0.08–2.18 nM H2). Ratios of inorganic carbon production to sulfate consumption show AOM drives sulfate reduction in WOR while degradation of organics drive sulfate reduction in CLB. DiscussionWe conclude more reactive organic matter increases hydrogen concentrations and their variability in anoxic marine sediments. In our AOM-dominated site, WOR, sulfate reducers have tight control on hydrogen via consortia with fermenters which leads to the lower observed variance due to interspecies hydrogen transfer. After sulfate depletion, hydrogen accumulates and becomes variable, supporting methanogenesis. This suggests that CLB’s more reactive organic matter allows fermentation to occur without tight metabolic coupling of fermenters to sulfate reducers, resulting in high and variable porewater hydrogen concentrations that prevent AOM from occurring through reverse hydrogenotrophic methanogenesis.more » « lessFree, publicly-accessible full text available November 12, 2025
- 
            Abstract The Amazon River mobilizes organic carbon across one of the world's largest terrestrial carbon reservoirs. Quantifying the sources of particulate organic carbon (POC) to this flux is typically challenging in large systems such as the Amazon River due to hydrodynamic sorting of sediments. Here, we analyze the composition of POC collected from multiple total suspended sediment (TSS) profiles in the mainstem at Óbidos, and surface samples from the Madeira, Solimões and Tapajós Rivers. As hypothesized, TSS and POC concentrations in the mainstem increased with depth and fit well to Rouse models for sediment sorting by grain size. Coupling these profiles with Acoustic Doppler Current Profiler discharge data, we estimate a large decrease in POC flux (from 540 to 370 kg per second) between the rising and falling stages of the Amazon River mainstem. The C/N ratio and stable and radiocarbon signatures of bulk POC are less variable within the cross‐section at Óbidos and suggest that riverine POC in the Amazon River is predominantly soil‐derived. However, smaller shifts in these compositional metrics with depth, including leaf waxn‐alkanes and fatty acids, are consistent with the perspective that deeper and larger particles carry fresher, less degraded organic matter sources (i.e., vegetation debris) through the mainstem. Overall, our cross‐sectional surveys at Óbidos highlight the importance of depth‐specific sampling for estimating riverine export fluxes. At the same time, they imply that this approach to sampling is perhaps less essential with respect to characterizing the composition of POC sources exported by the river.more » « less
- 
            Subsurface environments are among Earth’s largest habitats for microbial life. Yet, until recently, we lacked adequate data to accurately differentiate between globally distributed marine and terrestrial surface and subsurface microbiomes. Here, we analyzed 478 archaeal and 964 bacterial metabarcoding datasets and 147 metagenomes from diverse and widely distributed environments. Microbial diversity is similar in marine and terrestrial microbiomes at local to global scales. However, community composition greatly differs between sea and land, corroborating a phylogenetic divide that mirrors patterns in plant and animal diversity. In contrast, community composition overlaps between surface to subsurface environments supporting a diversity continuum rather than a discrete subsurface biosphere. Differences in microbial life thus seem greater between land and sea than between surface and subsurface. Diversity of terrestrial microbiomes decreases with depth, while marine subsurface diversity and phylogenetic distance to cultured isolates rivals or exceeds that of surface environments. We identify distinct microbial community compositions but similar microbial diversity for Earth’s subsurface and surface environments.more » « lessFree, publicly-accessible full text available December 20, 2025
- 
            Organisms that live in different environments face different evolutionary pressures. As such, organisms that have more successful phenotypes reproduce more frequently, but differing selective pressures acting at the organismal level can influence genes, and thus proteins. Understanding how proteins adapt across environments may therefore be useful in engineering proteins for specific environments as well as to improve our understanding of basic biology. In this work, we explicitly compare homologous (read: paired) proteins from different environments. While previous studies have explored the relevant evolutionary pressures in one of these environments [11], [17] and genomic responses to those pressures [1], [28], no prior computational study of their proteins has been performed. We apply ESM-2 [20] and although there is no signal in our negative control (two divergent yeast strains) as expected, we obtain near perfect prediction accuracy for our selected environmental gradient–the well-established subsurface vs. surface biome. We further show that ESM-2 is able to capture relevant fine-grained biological patterns in its embedding space, even in its smallest model. Significantly, we demonstrate that these embeddings can be interpreted using a novel visualization pipeline built using explainable AI techniques.more » « less
- 
            Microorganisms that transform and oxidize organic material (that is, heterotrophs) play a fundamental role in the geochemical cycling of key elements in the ocean. Through their growth and activity, heterotrophic microorganisms degrade much of the organic matter produced by phytoplankton in the surface ocean, leading to the regeneration and redistribution of nutrients and carbon back into the water column. However, most organic matter is physically too large to be taken up directly by heterotrophic microorganisms. Consequently, many heterotrophs secrete exoenzymes that break down large molecules outside the cell into smaller substrates that can then be directly taken up by the cell. The complex nature of the biochemical systems that microorganisms use to secrete these enzymes suggests that they were unlikely to have been present in the earliest heterotrophs. In a pre-exoenzyme ocean, heterotrophic microorganisms would only be able to access a small fraction of organic matter such that most dead phytoplankton biomass would have passed directly through the water column and settled onto the seafloor. Here we synthesize existing geobiological evidence to examine the fate of organic matter in the absence of exoenzymes in early oceans. We propose that on an Earth before exoenzymes, organic matter preservation, metal availability and phosphorus recycling would have operated differently than they do on the contemporary Earth.more » « less
- 
            Yin, Yanbin (Ed.)Microbial communities in terrestrial geothermal systems often contain chemolithoautotrophs with well-characterized distributions and metabolic capabilities. However, the extent to which organic matter produced by these chemolithoautotrophs supports heterotrophs remains largely unknown. Here we compared the abundance and activity of peptidases and carbohydrate active enzymes (CAZymes) that are predicted to be extracellular identified in metagenomic assemblies from 63 springs in the Central American and the Andean convergent margin (Argentinian backarc of the Central Volcanic Zone), as well as the plume-influenced spreading center in Iceland. All assemblies contain two orders of magnitude more peptidases than CAZymes, suggesting that the microorganisms more often use proteins for their carbon and/or nitrogen acquisition instead of complex sugars. The CAZy families in highest abundance are GH23 and CBM50, and the most abundant peptidase families are M23 and C26, all four of which degrade peptidoglycan found in bacterial cells. This implies that the heterotrophic community relies on autochthonous dead cell biomass, rather than allochthonous plant matter, for organic material. Enzymes involved in the degradation of cyanobacterial- and algal-derived compounds are in lower abundance at every site, with volcanic sites having more enzymes degrading cyanobacterial compounds and non-volcanic sites having more enzymes degrading algal compounds. Activity assays showed that many of these enzyme classes are active in these samples. High temperature sites (> 80°C) had similar extracellular carbon-degrading enzymes regardless of their province, suggesting a less well-developed population of secondary consumers at these sites, possibly connected with the limited extent of the subsurface biosphere in these high temperature sites. We conclude that in < 80°C springs, chemolithoautotrophic production supports heterotrophs capable of degrading a wide range of organic compounds that do not vary by geological province, even though the taxonomic and respiratory repertoire of chemolithoautotrophs and heterotrophs differ greatly across these regions.more » « less
- 
            Yin, Yanbin (Ed.)Microbial communities in terrestrial geothermal systems often contain chemolithoautotrophs with well-characterized distributions and metabolic capabilities. However, the extent to which organic matter produced by these chemolithoautotrophs supports heterotrophs remains largely unknown. Here we compared the abundance and activity of peptidases and carbohydrate active enzymes (CAZymes) that are predicted to be extracellular identified in metagenomic assemblies from 63 springs in the Central American and the Andean convergent margin (Argentinian backarc of the Central Volcanic Zone), as well as the plume-influenced spreading center in Iceland. All assemblies contain two orders of magnitude more peptidases than CAZymes, suggesting that the microorganisms more often use proteins for their carbon and/or nitrogen acquisition instead of complex sugars. The CAZy families in highest abundance are GH23 and CBM50, and the most abundant peptidase families are M23 and C26, all four of which degrade peptidoglycan found in bacterial cells. This implies that the heterotrophic community relies on autochthonous dead cell biomass, rather than allochthonous plant matter, for organic material. Enzymes involved in the degradation of cyanobacterial- and algal-derived compounds are in lower abundance at every site, with volcanic sites having more enzymes degrading cyanobacterial compounds and non-volcanic sites having more enzymes degrading algal compounds. Activity assays showed that many of these enzyme classes are active in these samples. High temperature sites (> 80°C) had similar extracellular carbon-degrading enzymes regardless of their province, suggesting a less well-developed population of secondary consumers at these sites, possibly connected with the limited extent of the subsurface biosphere in these high temperature sites. We conclude that in < 80°C springs, chemolithoautotrophic production supports heterotrophs capable of degrading a wide range of organic compounds that do not vary by geological province, even though the taxonomic and respiratory repertoire of chemolithoautotrophs and heterotrophs differ greatly across these regions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available